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L
ow-dimensional carbon-based nano-
materials, graphene1,2 and graphene
nanoribbons (GNRs), have attracted

extensive attention in recent years due to
their extraordinary electrical,3�7 optical,8,9

thermal,10�14 and mechanical15,16 proper-
ties. The experimental room temperature
(RT) carrier mobility (15000�27000 cm2

V�1s�1), quantized electrical conductance,
high Seebeck coefficient,17 extremely high RT
thermal conductivity (κ) of graphene, and the
ability to tune these properties by changing
width andedge structure18�21 havemotivated
many scientists to consider graphene-based
materials for future nanoscale device
applications,22�25 including thermal manage-
ment in nanoelectronics26,27 and thermo-
electric power generation.28�32 Recent devel-
opments in fabrication techniques havemade
it possible to grow very narrow33,34 and atom-
ically precise35 GNRs, further stimulating inter-
est in this direction.
The room temperature thermal conduc-

tivity of graphene has been measured by
several groups, and reported values range
between 400 and 600 W/mK10,13 and
2500�5300 W/mK11�13 for the supported
and suspended samples, respectively. The
strong dependence of these values on the
length and width of the samples can be
attributed to the long RT phononmean free
path (MFP), which is reported to be around
750 nm.26 In addition to these experimental
studies, a substantial theoretical effort
based on several different techniques has
been devoted to understand the thermal
transport properties of both graphene36�39

andGNRs.40�49 The calculations confirm the
experimentally predicted high values for κ
at RT, particularly for the suspended gra-
phene, and support the observed effects of
width and length on thermal transport.
Additionally, significant variations in κ of

GNRs with edge termination have been
predicted, where zigzag GNRs (ZGNRs) are
found to be thermally more conductive
than the armchair GNRs (AGNRs) having
the same width and length.40,43,45,50,58 In
spite of this serious theoretical effort, the
effects of intrinsic defects, single and dou-
ble vacancies, topological defects, edge
termination, and level of roughness on κ

of experimentally feasible GNRs have not
been systematically studied as of yet. In
particular, the extensive investigation of
how these imperfections can be used to
tune the resulting thermal transport would
be enormously beneficial for future techno-
logical applications of GNRs.
On the other hand, the influence of these

imperfections on the electronic transport is not
parallel to the thermal case. The electronic

* Address correspondence to
g.cuniberti@tu-dresden.de,
tcagin@che.tamu.edu.

Received for review January 11, 2011
and accepted March 31, 2011.

Published online
10.1021/nn200114p

ABSTRACT The influence of the structural detail and defects on the thermal and electronic

transport properties of graphene nanoribbons (GNRs) is explored by molecular dynamics and non-

equilibrium Green's function methods. A variety of randomly oriented and distributed defects, single

and double vacancies, Stone�Wales defects, as well as two types of edge form (armchair and

zigzag) and different edge roughnesses are studied for model systems similar in sizes to experiments

(>100 nm long and >15 nm wide). We observe substantial reduction in thermal conductivity due to

all forms of defects, whereas electrical conductance reveals a peculiar defect-type-dependent

response. We find that a 0.1% single vacancy concentration and a 0.23% double vacancy or

Stone�Wales concentration lead to a drastic reduction in thermal conductivity of GNRs, namely, an

80% reduction from the pristine one of the same width. Edge roughness with an rms value of 7.28 Å

leads to a similar reduction in thermal conductivity. Randomly distributed bulk vacancies are also

found to strongly suppress the ballistic nature of electrons and reduce the conductance by 2 orders of

magnitude. However, we have identified that defects close to the edges and relatively small values

of edge roughness preserve the quasi-ballistic nature of electronic transport. This presents a route of

independently controlling electrical and thermal transport by judicious engineering of the defect

distribution; we discuss the implications of this for thermoelectric performance.

KEYWORDS: thermal transport . electronic transport . thermoelectric . graphene .
carbon
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transport can exhibit surprising variations that
depend on the type of defects, chirality, and edge
structure.7,28,51�57 While edge roughness produces a
decrease in the thermal transport through GNRs re-
gardless of the chirality or width,28,48,58 its effect on
electronic transport is more complex. The electronic
transport through edge-roughened ZGNRs retains the
quasi-ballistic transport characteristics of pristine
GNRs;7,28,51,59 however, the quasi-ballistic nature of
AGNRs is deteriorated significantly by the presence of
only minute edge disorder.7,51,54,56 On the other end of
the spectrum, bulk vacancies have been shown to
reduce both the thermal and electronic transport at
small concentrations, independent of the ribbon
chirality.52,60,61 ZGNRs are of particular interest due to
the fact that electrons in the first conduction plateau
(FCP) are less sensitive to edge disorder, where pho-
nons are strongly suppressed. This opposite behavior
can give rise to a thermoelectric figure of merit (ZT) as
high as 4 at room temperature.28 The principal aim of
this study is to analyze the interplay between defects in
GNRs and the resulting effects on thermal and elec-
tronic transport. We investigate each of these cases
meticulously to obtain a better understanding of the
transport properties and the possible independent
control of them for potential applicability of GNRs as
thermoelectrics. The findings then can be used as
guide for future experimental and theoretical work.

RESULTS AND DISCUSSION

Thermal Transport. The effect of randomly distribu-
ted single and double vacancies, Stone�Wales de-
fects, and ribbon-edge terminations and level of
roughness on the κ of GNR structures having a width
of >15 nm and a length of >100 nm are considered in
this study. This requires simulations of systems (up to
300 000 atoms) that have experimental dimensions
with rough edges and various structural defects, each
of which affects thermal conductivity and the electro-
nic properties differently. Figure 1 shows various
structural aspects of GNRs that are investigated in
this work, including rough edges, single vacancies,
double vacancies, and Stone�Wales defects. To per-
form the lattice thermal conductivity calculations, we
employ molecular dynamics and Green�Kubo form-
alism (see theMethods section). A reoptimized Tersoff
parameter set38 (RP) is used to represent graphene
and GNRs. The original Tersoff parameter set62 (OP)
underestimates the frequencies of the acoustic pho-
non modes, while the RP produces a graphene pho-
non dispersion in good agreement with experiment.
Of fundamental importance is that the RP captures
the quadratic behavior of the lowest frequency pho-
non modes near the Γ point. The OP produces linear
behavior in this region, which may cause significant
error in thermal conductivity. The significance of this
difference is reflected by a 50�60% underestimation

of the thermal conductivity of graphene by the OP
when compared to the RP (Figure 2a). As a further note,
the RT κproducedby theRP, 2600W/mK, is coherentwith
various experimental measurements and theoretical cal-
culations.10,12,38,63 The slope of the lattice thermal con-
ductivity shows a decreasing trendwith temperature due
to an increase in phonon population at higher energy
states, resulting in an increase in phonon scattering.

Before discussing how edge and vacancy defects
affect the κ of GNRs, it is important to thoroughly under-
stand the behavior of the pristine GNRs, including how
the length of the simulated GNR influences the resulting
thermal conductivity. Certain artificial size effects can
arise in MD due to the periodic boundary conditions
along the transport direction for the nanosystems. When
the simulation size is too small for a nanosystem simu-
lated using 1D or 2D periodicity, this periodicity leads to
correlated scattering events which reduce the calculated
thermal conductivity, requiring a systematic study of
length dependence.64 A variety of studies have reached
different conclusions onwhatdimension is sufficient for a
GNR to be free from these spurious size effects, but most
use a length on the order of tens of nanometers.40 The
length dependence of κ (see Figure 2b) suggests that the
minimum length to attain a converged κ value should be

Figure 1. Schematic description of graphene nanoribbons
including (a) edge defects, (b) single vacancies, (c) Stone�
Wales defects and double vacancies.
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around 75�100 nm, as reflected in the results for ZGNRs
with widths of 15 and 8 nm. At this limit, the RT κ for a
15 nm wide ZGNR is shown to reach 2300 W/mK. The
ribbonwidthalsoproducesa strongeffect that can clearly
be seen for bothZGNRs andAGNRs (Figure 2c). At awidth
of 4 nm, κ becomes quite small, 840 and 680 W/mK for
ZGNRs and AGNRs, respectively, and the edge scattering
becomes more pronounced. With increasing width va-
lues, the κ of both edge termination forms steadily rises,
with the zigzag termination formalways remaininghigher,
nearly twice that of the armchair value at 15 nmwidth.
The low value of κ for the AGNRs is a result of its higher
number of edge scatterers compared to the ZGNRs; that
is, the armchair termination has more atoms per unit
length than the zigzag termination, which effectively
increases the influence of the edges on κ. This persists
until the width reaches 40 nm, after which the κ of both
edge forms appears to converge to 2300 W/mK. This
value is still 10% less than “infinite” graphene, suggesting
that the approach to the graphene conductivity is gra-
dual and requires much larger widths.

As evident from the difference in thermal conduc-
tivity of ZGNRs and AGNRs, the edge form/structure is
a degree of freedom in modifying the thermal trans-
port. Edge, in principle, is an extended defect and
hence decreases the thermal conductivity. Roughness
is another edge structure parameter that further
modifies the average phonon mean free path by
introducing additional scattering processes. In this
study, the rough ribbon edges are randomly created
with a target roughness value, and the coordination
number is at least 2 for the edge carbon atoms.
Naturally, for a higher roughness, there are more
two-coordinated atoms for the ZGNRs. In Figure 1, a
portion of one such ribbon edge with a roughness of
7.28 Å is shown. The thermal conductivity of the
ribbon decreases with increasing roughness, as can
be seen in Figure 3a. At room temperature, compared
to smooth-edged ribbon of the same size, approxi-
mately an 80% reduction in the thermal conductivity

value is observed for the highest roughness value. In
addition, the data in Figure 3 show a drastic change in
temperature dependence of κ. As the roughness in-
creases, the slope of the conductivity curve approaches
zero, indicating dominance of the scattering due to
roughness. An analogous observation can be made as
the single vacancy concentration is increased to 0.05%

Figure 3. Temperature dependence of lattice thermal con-
ductivity of (a) smooth/rough and (b) vacancy introduced
ZGNRs. Three different roughness values (i.e., 1.98, 4.44, and
7.28 Å) are considered. The rough ribbons are built such
that they have the same number of atoms and length as a
smooth ribbon of 500 nm long and 15 nm wide (the details
of the algorithmused for generating rough edges is given in
the Methods section). The inset shows the reduction of
room temperature thermal conductivity as roughness is
increased. Single vacancies are also introduced in a 500 nm
long and 15 nm wide ribbon with three different concen-
trations: 0.0001, 0.0005, and 0.001.

Figure 2. Lattice thermal conductivity of (a) graphene calculated with both original (OP) and reoptimized (RO) empirical
interatomic potentials, (b) ZGNRs having widths of 15 and 8 nm and lengths up to 200 nm, (c) ZGNRs and AGNRs having
lengths of 100 nm and widths up to 40 nm. All simulations are at ambient conditions unless noted otherwise.
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and above (see Figure 3b). The conductivity behaves
much like defect-free ribbon for a vacancy concentra-
tion of 0.0001; however, the curve flattens when the
vacancy concentration increases to 0.001. It is also
noteworthy that, in extreme defect states, a very weak
temperature-dependent behavior is observed with
similar conductivity values.

For a more complete understanding of thermal
transport in GNRs, the interplay between internal
defect states and κ should be further addressed. We
focus on the three most common types of defects,
shown in Figure 1: single vacancies, double vacan-
cies, and Stone�Wales defects. A single vacancy,
removal of one atom, is a high energy defect that
leaves three carbon atoms two-coordinated, effec-
tively breaking the sp2 character of the local lattice. A
double vacancy, removal of two atoms from the lattice,
is more favorable than a single vacancy as the local
structure rearranges to restore the three-coordinated
sp2 bonding to each atom by creating an octagon
and two pentagon structure. Similarly, a Stone�
Wales defect is a topological defect that preserves
sp2 bonding by forming a structure with two hepta-
gons and two pentagons. Among the defect types
we consider, the single vacancy has the most dra-
matic effect on κ (Table 1). At very low concentra-
tions, 0.0001 (corresponding to removal of 1 carbon
atom out of 10 000), a 25% reduction in thermal
conductivity is noted, while a concentration of
0.001 shows close to an 80% decrease from the
values obtained for the pristine GNRs. However, a
concentration of 0.001 for Stone�Wales and diva-
cancies only reduces the thermal conductivity by
70%. To reach the 80% reduction, these concentra-
tions must be increased to 0.0023. The underlying
mechanism making single vacancies much more
effective at reducing lattice thermal conductivity is
intrinsically related to their less stable two-coordi-
nated atoms. The two-coordinated atoms will be less
likely to follow the normal pattern of vibrations in
the pristine material and cause a higher degree of
scattering. This point is further supported by the fact

that the double vacancy and Stone�Wales defects
have the same effect on thermal conductivity, and
both have only sp2 bonds. Even when Stone�Wales
defects and double vacancies are mixed in a 1:1 ratio,
the thermal conductivity remains the same as the
pure double vacancy or Stone�Wales structure with
the same concentration (Table 1). This weaker de-
pendence of κ on the Stone�Wales defects has also
been noted for single-wall carbon nanotubes and
SWCNT bundles.64

Electronic Transport and Thermoelectric Properties. First,
we investigate electronic transport through ZGNRs as a
function of the spatial distribution of single vacancy
defects. We perform the calculations for ZGNR(70), with
70 being the number of zigzag chains along the ribbon,
which corresponds to a width of ∼15 nm. There are 140
atomsper unit cell, and70 inequivalent vacancypositions
(v = 1, ..., 70). The electronic transmission (T v) in the
presence of a single vacancy varies strongly depending
on its position, v (see Figure 4). If the vacancy is located
within 7.5 Å of the edge of the ZGNR (v e 7), the
electronic states within the FCP are weakly affected, but
edge-localized states at the charge neutrality point (CNP)
are scattered strongly (Figure 4a). This is due to the fact
that these edge states give rise to a singularity in the
density of states (DOS) at the CNP65 and are therefore
prone to defects located close to the edges. The opening
of a transport gap at the CNP and quasi-ballistic behavior
within the FCP were reported previously for ZGNRs with
edge roughness,7,51 but to the best of our knowledge,
similar behavior for vacancies close to the edges has not
been reported before. As the single vacancy is positioned
away from the edge (v > 7), states within the FCP are also
scattered strongly (Figure 4b).

To better understand the electronic transport
through defected GNRs, we investigate long ZGNRs
with random distributions of single vacancies. Having
obtained the transmission spectra of individual scat-
terers, we employ scattering theory which yields
accurate results for dilute scatterers.66,67 In the diffusive

Figure 4. Electronic transmission through ZGNR(70) with a
single vacancy located at various sites, v. The states within
the first conduction plateau are weakly affected when the
vacancy is close to the edges, v e 7 (v = 1 denoting the
outermost atom) (a), but the quality is not preserved when
the vacancy is positioned closer to the middle, v > 7 (b). The
shaded regions are for the density of states of the pristine
ribbon, and the dashed lines indicate the pristine
transmission.

TABLE 1. Thermal Conductivity Results for Various

Defected ZGNRs of 100 nm Length and 15 nm Width at

Ambient Conditions (Percent Decrease from the Pristine

Case Is Also Included)

type concentration κ (W/mK) % decrease

pristine 2300
single vacancy 0.0001 1726 25

0.0005 943 59
0.0010 426 81

double vacancy 0.0010 707 69
Stone�Wales 0.0010 709 69
mix 50/50 0.0010 703 69

0.0017 612 73
0.0023 431 81
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regime, the resistance due to each scatterer is additive;
therefore, the transmission due to N vacancies is
obtained according to

1
TN

¼ 1 � N

To
þ ∑

v

Nv

Tv
, (1)

where Ro/2T o is the contact resistance, T o is the
pristine transmission and Ro = h/e2 is the quantum of
resistance. T v and Nv are the transmission amplitude
and the number of vacancies with particular config-
uration v, respectively, andN=ΣvNv is the total number
of vacancies in a sample. In Figure 5a, transmission
spectra are plotted for different numbers of single
vacancies ranging between N = 101 and 104 as well
as that of the pristine ribbon. Here,N= 104 corresponds
to a ZGNR of length, L, 17.5 μm with a defect concen-
tration of d = 0.001. We note that the transmission
spectrum is symmetric around the CNP (E = 0) due to
electron hole symmetry of the Hamiltonian (see
Methods). Single vacancies are most effective within
the FCP, and sawtooth-like transmission profiles are
observed for all N. We also calculate the room tempera-
ture electronic conductance for N = 103 and N = 104

(Figure 5b). We note that the conductance is reduced by
more than 2 orders of magnitude for N = 104, compared
to the pristine ZGNR, but the conductance plateaus are
still observable. Survial of conductance plateaus, even
when conductance is suppressed dramatically, was

measured previously.61 In a previous study, the emer-
gence of the plateaus was assigned to be due to the
enhanced backscattering by bulk vacancies.60 In that
work, the calculations were carried out for AGNRs, and
sawtooth-like transmission profile for bulk disorder was
observed, similar to the profiles we observe for ZGNRs.
Our calculations show that the survival of the conduc-
tance steps are independent of the edge shape being
armchair or zigzag.

As an important step to better understand electronic
transport inGNRs,we investigatehow thedegreeof edge
roughness affects both electronic transmission through
the ribbon and themean free path of the electrons. For a
ZGNR with edge roughness, we employ a recursive
Green's function scheme.68 We prefer the recursive
scheme in order to include themultiple scattering effects
due to the correlated and dense nature of edge rough-
ness disorder. We calculate the transmission values of
ZGNR(70) with edge roughness for various lengths of
structures up to∼0.5μm(2000unit cells). In Figure 6a,we
plot the electronic transmission values for sample lengths
up to L = 125 μmwith edge roughness Rrms = 1.98 Å. The
transmission values for L e 0.5 μm are obtained by
averagingover 25 representative structuresof thedesired
edge roughness, as defined by the same algorithm in
Figure 3. For L > 0.5 μm, we use the elastic mean free
paths l (E) to predict the transmission values. The mean
free paths are obtained from the ensemble-averaged
transmission spectra using T (E,L) = T p(1 þ L/l (E))�1,

Figure 6. (a) Electron transmission for ZGNR(70) with edge
roughness, Rrms = 1.98 Å, at lengths ranging from 0.25 nm
(pristine case) to 125 μm. (b) Elastic mean free paths due to
edge roughness are shown for different roughness values.
Vertical gray lines in (b) indicate the band edges of pristine
ZGNR(70).

Figure 5. (a) Transmission spectra with a varying number of
single vacancies with N = 0, 10, 100, 1000, and 10 000 in a
17.5 μm long ZGNR. (b) Room temperature electrical con-
ductance G for N = 103 and N = 104 single vacancies (solid
and dashed curves, respectively). For N = 104, conductance
is reduced by approximately 1 order of magnitude com-
pared to the N = 103 case (note the prefactor 10 in the
legend), but quantum conductance plateaus are still
distinguishable.
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where T p is the transmission of the pristine ribbon. In
Figure 6a, one observes that transmission drops rapidly
with length, except for the energy values E < 0.17 eV,
and the reduction ismore rapid for higher energies. This
suppression is clearly visible in the energy dependence
of l in Figure 6b. For Rrms = 1.98Å, l is always longer than
10 μm within the FCP (E < 0.17 eV), reaching a value of
100 μm, then dropping rapidly with increasing energy
and making dips at the band edges. The l is shorter for
higher Rrms at all energies. It is still considerably larger in
the FCP compared to the rest of the spectrum for Rrms =
4.44 Å, but this behavior is reversed when Rrms = 7.38 Å.
We assign this behavior to the fact that transmission
within the FCP is preserved only when vacancies are
within 7.5 Å of the edge (v e 7). In other words, when
Rrms increases to 7.38 Å, the amplitude of the roughness
can breach the 7.5 Å region at the edge, causing
significant scattering in the FCP.

Comparing edge roughness with bulk vacancies,
we note the destructive nature of bulk vacancies at
low energies, while the quasi-ballistic transport
through rough ZGNR with small Rrms, together with
depressed lattice thermal conductivity of these
structures, implies good thermoelectric properties.
Indeed, as the length of the ribbon is increased, the
ratio of phonon contribution to thermal conduc-
tance to the electron contribution is reduced. At
room temperature, when Rrms = 1.98 Å and the
chemical potential is pinned to the CNP, σph/σel
becomes 20.6, 2.3, and 0.3 for samples of lengths
L = 0.25, 2.5, and 25 μm, respectively. In Figure 7a,c,
we plot the Seebeck coefficients at T = 300 K for L =
61.5 nm and L = 125 μm, respectively. Local extrema
of Seebeck coefficients, when the chemical potential
is close to μ = 0.17 eV, are due to the rapid variation
of the transmission function at the band edge, and
Rrms = 1.98 Å yields the highest magnitude for all

samples at all temperatures considered. For L =
61.5 nm, ZT is always lower than 10�2. It increases
with length and reaches the value of ZT = 0.41 for
Rrms = 1.98 Å when L = 125 μm. Despite the fact that
lattice thermal conductivity is lower for Rrms = 4.44
and 7.98 Å, such high ZT values are not observed for
Rrms values larger than 1.98 Å. Again, this can be
attributed to the suppressed electrical conductance
for large Rrms.

CONCLUSION

The electronic and thermal properties of GNRs are
strongly dependent on the dimensions of the struc-
ture, edge termination/roughness, and lattice defect
distribution. In this study, molecular dynamics and
non-equilibrium Green's function methods are utilized
on GNRs of sizes up to micrometers in order to
investigate the extent of these dependencies. Classical
dynamics calculations show that decreasing the width,
changing the termination of ribbons from zigzag to
armchair, and roughening the edge all reduce the
thermal conductivity due to an increase in the ratio
of edge length to surface area. As this ratio increases,
phonon edge scattering dominates the thermal behav-
ior. Interestingly, the κ calculated for the roughest
ribbon and the ones calculated for highest concentra-
tion of single vacancy, double vacancy, and Stone�
Wales defects are all similar. Moreover, at these
“extreme” concentration cases, κ behaves almost
independent of the temperature, which is attributed to
the defect-induced domination of elastic mean free
paths over anharmonic mean free paths. Although the
thermal conductivities of all the defected ribbons
converged to similar values, the concentrations corre-
sponding to these points are not all the same for
internal defects. Single vacancies are more effective
in decreasing κ compared to double vacancies and
Stone�Wales defects. In fact, double vacancies and
Stone�Wales defects do not show any quantitative
difference.
Another dramatic difference between the effects of

edge and bulk vacancies on the electronic conduction
of ZGNRs suggests that bulk vacancies destroy the
ballistic electronic transport properties of GNRs except
when present within 7.5 Å of the edge. Despite the
destruction of ballistic behavior by bulk defects, quan-
tum conduction plateaus are still observable at low
conductance values. Additionally, the electronic qual-
ity of ZGNRs with edge disorder can be preserved,
provided that the edge roughness does not signifi-
cantly breach the key 7.5 Å edge region. The weak
dependence of electrical conduction on the edge
roughness in ZGNRs is attributed to the fact that the
electronic band within the first conduction plateau is
onlyweakly dependent on the ribbonwidth, which is a
characteristic of zigzag edge shape. Combined with

Figure 7. Seebeck coefficients are shown at T = 300 K for
roughness values Rrms = 1.98 Å (solid), Rrms = 4.44 Å
(dashed), and Rrms = 7.28 Å (dot-dashed) at lengths of L =
61.5 nm (a) and L = 125 μm (c). Thermoelectric figure of
merit for the same set of parameters as (a) and (c) are given
in (b) and (d), respectively. Vertical gray lines indicate the
band edges of pristine ZGNR(70).
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the suppressed lattice thermal conduction, edge-
disordered ZGNRs have significant thermoelectric po-

tential, while bulk defects suppress the thermoelectric
quality.

METHODS
In order to calculate thermal conductivity, an accurate

description of phonon dispersions, especially those of acoustic
modes, of the considered material is extremely important as
they strongly influence thermal transport properties.69 Lindsay
et al.38 have recently shown that the original Tersoff62 and
Brenner-type empirical interatomic potential parameters do
not accurately reproduce the phonon dispersions or the group
velocities of the three acoustic branches. They have also
presented a reoptimized parameter set which, for suspended
graphene and (10,10) single-wall carbon nanotubes, gives a κ
in much better agreement with the experimental results.
In this study, the reoptimized parameter set is employed
to accurately represent the phonons in graphene-based
systems.38

Green�Kubo theory70 is a standard technique used in equi-
librium molecular dynamics simulations for the determination
of transport coefficients through the time-integrated autocor-
relation functions relevant to the targeted transport property, as
dictated by the fluctuation�dissipation theorem. The correla-
tion function approach is equivalent to time evolution of various
functions (e.g., mean square displacement to diffusion through
Einstein relation). In particular, the thermal conductivity can be
obtained from the equilibrium behavior of an energy moment
vector, R

R(t) ¼ ∑
i

ri(t)εi(t) (2)

where εi is the energy content of atom i. In a nonconvective
system, this energy moment expression may be expressed as71

R(t) ¼ ∑
i

ri

Z t

0
f i(τ)vi(τ)dτ (3)

where i is a summation over all particles in the simulation cell as
well as the images which form unique interaction groups (i.e.,
pairs for 2-body, triplets for 3-body, etc.). The force on particle
i due to all unique interactions of i is represented by fi; ri and vi
are simply the position and velocity of the same particle. Using
this definition, the thermal conductivity in a given direction, κμν,
is found via an equation akin to the Einstein diffusion expression

Kμν ¼ 1
VkBT2

lim
t f ¥

1
2t

Æ[Rμ(t) � Rμ(0)][Rν(t) � Rν(0)]æ (4)

with T, kB, and V being the temperature, Boltzmann constant,
and volume, respectively.
ThoughGreen�Kubo theory requires lengthy simulations to

generate converged results, it provides the best representa-
tion of thermal conductivity, as the assumptions regarding
phonon relaxation times, phonon velocities, and anharmonic
effects required for other models are implicitly included in the
temporal behavior of Rμ. The simulations performed herein use
the NVE ensemble and a time step of 1 fs, the optimum step
that conserves energy and reliably converges Rμ. Each data
point for the thermal conductivity is obtained from the
average of multiple simulations each lasting a minimum of 5
ns. A time scale on the order of a few nanoseconds is necessary
to accurately average the vibrational processes that contribute
to thermal conductivity. For the calculations with GNRs, we
determine only the κ component along the direction of the
ribbon length and define the volume as the surface area of the
2D GNR times the interplanar spacing of graphite.
For electronic transport calculations, a tight-binding

(TB) model is employed together with non-equilibrium
Green's functions. The tight-binding Hamiltonian is written as
H = � t∑Æi,jæ(ci

†cj þ Hc), where t = 2.7 eV, ci
† (ci) is the electron

creation (annihilation) operator at site i, and the summation
runs over the first nearest neighbors.65 The TB Hamiltonian is
known to yield results in agreement with first-principles density
functional theory (DFT) calculations for graphene in both one
and two dimensions72 and also in the presence of vacancies.21

We determined the electronic band structure for pristine ZGNR-
(70) as well as defective ZNGRs. Here, 70 is the number of zigzag
chains in the transverse direction, and it corresponds to a width
of 15 nm. Pristine ZGNR is a zero gap semiconductor indepen-
dent of its width with a high density of states around the charge
neutrality point (CNP). The reservoirs are modeled with semi-
infinite pristine GNRs coupled to the central region from left and
right, and the electronic conductance is calculated as

G (μ, T ) ¼ � 2e2

h

Z ¥

�¥
dET (E)

DfF(E, μ, T )
DE

(5)

with fF being the Fermi distribution function, μ is the chemical
potential, T is temperature and T = Tr[ΓLG

RΓRG
A] is the

transmission coefficient. Here ΓL(R) stands for the broadening
due to coupling to the left (right) reservoir, GR(A) is the
retarded (advanced) GF of the central region.73 GR values of
long ribbons are calculated using the recursion scheme.68 We
carry out calculations for 25 different realizations of disorder
and perform ensemble averages. Onsager coefficients are
calculated using the functions Ln(μ,T ) =

R
dE(�∂fF(E,μ,T )/∂E)-

(E�μ)nT (E).74,75 Temperature-dependent electrical conductance
is defined as G (μ,T) = (2e2/h)L0, and the Seebeck coefficient can
be obtained with S(μ,T) = (�1/eT)L1/L0. The electron and
phonon contributions to thermal conductance are given with
σel(μ,T) = (2/hT)(L2� L1

2/L0) and σph = κA/L, respectively. Here, A
is the cross section area, L is length of the ribbon, and κ is the
lattice thermal conductivity. Thermoelectric figure of merit is
defined as ZT = S2G T/(σel þ σph).
In this study, we employed both classical dynamics and

tight-binding model to rough ribbons which are created by
randomly but continuously varying the edge profile between
predefined limits. The distance between the limits, conse-
quently, determines the roughness for an edge. In defining
the roughness for the ribbons, we used a common root mean
squared parameter, Rrms. Briefly, Rrms is the standard deviation
of the positions of atoms at the edge from the mean of the
whole edge. Since there are two edges, the total roughness is
the average of these two.
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